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ABSTRACT

The MGR[NV] algorithm of Ries, Trottenberg and Winter, Algorithm 2.1

of Braess and Algorithm 4.1 of Verf'urth are all algorithms for the numerical

solution of the discrete Poisson equation based on red-black Gauss-Seidel

smoothing iterations. In this work we-consider,the extension of the MGR[0]

method to t-he general diffusion equation -V .pVu : f In particular, for

the three grid scheme we extendan interesting and important result of Ries,

Trottenberg and Winter whose results are based on Fourier analysis and hence

intrinsically limited to the case where Q is a rectangle. Let 1 be a
0

general polygonal domain whose sides have slope I, 0 and ® : Let u

Ibe the error before a single multigrid cycle and !_et-._&- -be the error after

this cycle. Then E < 1 (l+Kh) iO where II 1L denotes the
11i cy le The 2I ll11h 11 11 Lh

hh h
energy or operator norm. When p(x,y) constant, then K R 0
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1. Introduction

The MGR[v] multigrid algorithms of Ries, Trottenberg and Winter [4],

the Algorithm 2.1 of Braess Ell, [2] and Algorithm 4.1 of VerfUrth [5

are all algorithms for the numerical solution of the discrete Poisson

equation (the usual 5-point difference equations with Ax = Ay = h) based

on red-black Gauss-Seidel smoothing iterations. The analysis of [4] is

based on Fourier Analysis and is restricted to the case where the basic

domain Q is a square. The analysis of [l], [2] and [5] is for a bounded

polygonal domain Q whose sides have slope + 1,0 and - and is based on

certain energy estimates and a particular interpretation of the matrix equa-

tions. While this is not explicitly stated, this interpretation cln be

h H H 2h
viewed as a particular choice of IH, Ih , I 2h IH etc, the operators which

carry on the communication between the grids.

Recently, Kamowitz and Parter [3] considered a generalization of the

algorithms of Ries, Trottenberg and Winter and Braess. They consider the

general diffusion equation

V o p(x,y)Vu = f in 0,

(1.1) u = 0 on MS

p(x,y) > PO > 0

h H
in general domains Q . Using a different choice of IH Ih than Braess,

i.e. imagining a different interpolation structure in the space SH, they

employ other "Energy Estimates" to obtain the basic estimate - for a two

grid scheme: let E denote the error before a single multigrid cycle and

let : denote the error after that complete multigrid cycle, then

. .. . . .. . .
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(1 .2) II 1 "Lh 2 1(+Kh)Ih

where the constant K depends only on pO and I Vplj , the norm

of the gradient of p(x,y) and 1 1IL denotes the operator or energy

norm. However, it is important to remark that despite the different

interpretation of the problem, in the case of constant diffusion coefficient

p(x,y) = 1 we are dealing with exactly the same problem and the same itera-

tive method. The estimate (1.2) is thus a generalization of the estimates

(1.3) p(MG) < , p(MGR[O]) =
2' 2

of [1] and [4].

Another remarkable estimate of Ries, Trottenberg and Winter [4] is the

fact that, in the case of Poisson equation in the square, if a third grid

is introduced and one uses the MGR[O] method one obtains

(1.4) p(MGR[O], 3 grid) = 1

In this report we obtain this estimate in the form (1.2) for the general dif-

fusion equation (1.1) in bounded polygonal domains 0 whose sides have slope

+1, 0 or -. We also require that the corners of 0 belong to the coarsest

mesh. The constant K is a constant depending only on pO and the norm

of the first and second derivatives of p(x,y). Moreoever, if p(x,y) const.

then K = 0 . In general, throughout this paper K will denote such a constant.

In section 2 we formulate the problem and the basic three-grid multigrid
A

iteration. In particular we introduce the coarse grid operators LH9 LH9 L2h'

L2h. In section 3 we develope more notation and recall some basic estimates

• .."-.. ... . - .--- ..--. -,... .."....o -.,.'.. ' ... ... . ..-.-.-.-.-.-.-. ' .,'..-.. i. . . -... . ....... ."
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of [3]. In this section the reader is introduced to a number of additional

difference operators LH , L , L2h 2h' ' Q I This plethora

of operators gets a bit confusing. However if one first concentrates on the

case p(x,y) E 1 (i.e., the Poissbn equation) the situation simplifies. In

this case LH = Ll), L2h = )2h and (we always have) L I (1) +2(l)
ticaeLH=L H L L2hH 2LH ~2 H

L2h =2 2h +"L)2h' Moreoever, in this case

x Qx = L2h )
22h

[ 2h is the coarsest grid] and

x H

H H'2h

[SI is the intermediate grid]. Another observation which should be useful
H

is the fact that, in this case E(l ) is the same difference operator as

L2h except for points in QH which are next to the boundary. Moreover,

these exceptional points are in 0 H/0 2h not in Q2h" This perturbation of

causes a technical difficulty in the proof of lemma 5.2 even in this
H

simplest case. In all cases the introduction of the variable diffusion

coefficient p(x,y) introduces perturbation of the basic operators. However,

the essence of the proof of the main result [Theorem 5.1 or the estimate

(1.2)] is contained in the constant coefficient case. The analysis of the

algorithm is given in two parts, sections 4 and 5.

. . ......... ........-..-.-. -_-.....,.-.............. ., .. -.... ,......•.-...* ..
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2. The Problem

Given a (small) value h > 0 let {( lyi)=(kh,jh); k,j =0,+l,+2,...)

be the associated mesh points in the x -y plane. Let

(2.1) R { (x k~y .); k+j =l (mod 2)}

(2.2) R B {(x k~y.) k =-j =-0 (mod 2))

(2.3) RG (xk9y.) k Ej E1 (mod 2)1

Let Q be a bounded polygonal domain in the plane whose sides have

slope +1,0, or -, and every corner point (x,y) of M2 belongs to R B.

Define

(2.4a) Q h =(RO0U R BUR G) n

(2.4b) 3SI h = (RO0U R BUR G) n 9

(2.5a) QH=(R B UR G) n &

(2.5b) MH= (R B UR G) r)9

(2.6a) Q 2h = RB n 2

(2.6b) ;Q2h =RB )3.

For any function F(x,y) defined on ~2we write:



5

(2.7a) Fk,j F(XkYj)

(2.7b) Fk+ ,j  F((k+ )h,yj)

(2.7c) Fk,j+ F(xk, (j+)h)

The algebraic problem to be solved is: Find a mesh function U = {Ukj}

defined on Qh U M h which satisfies

(2.8a) [LhU] kj = Fkj (xkYj) E h

(2.8b) Ukj = 0 , (xkYj) E 3 h

where

(2.8c) [LhU]kj =h2 k,j Uk,j-Ukj] pk+,j[Uk+l,j-Uk,j]} +

1 u k PkkJ~~

h 1 ,j- [Uk,j "Uk,j-1l Pk,j+[Uk,j+1 "Uk,j]}

We turn to solution of these linear algebraic equations by a three-

grid method.

Let Sh, SH, S be the linear spaces of mesh functions defined on
h H'2h

Q h U aQh, QH U a12 H  and Q2H U a02h respectively which vanish on the

respective boundaries 3Qh' M H9 M 2h * We set up communication between

these spaces. Specifically we define the linear interpolation and pro-

h H H 2hjection operators IH  I2h, Ih , IH as follows. The interpolation
h h

operator IH (see the definition of I of [3]) is given by
H E

operaor I
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(2.9a) IhS
H SH -Sh

where

(2.9b) [IhU]k Ukif (xk~J SI UH DQ~

and, if (x k.yj Q ~h pQH1 then

(2.c) IHU3k --I- (k- ,jk-1,j Ik+ ,jk+l,j

Pk,j U k,j-1. +Ikj+ Uk j+lI

where

(2.9d) CkQ = 'k+il,j +Pk- ,j +Ik,j- +Pk,j+

Of course, if (x k~y) E K h /30H then

(2.9e) [h

The projection operator I H is defined byh

(2.10) 1H =1jh)T

Remark: The factor -~in (2.10) is included merely to keep the method

consistent with the MGR[v] methods of [4].

The interpolation operator I H is defined in a similar manner by

(2.11a) IH S -~S

I2h: 2h H
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with

(2.11b) [I2hU]kj = Uk if (xkYj) E 2hU3Q2h

and, if (xkYj) C SH/Q2h.. then

(2.11c) [I H Ulk = -L {p U U +
2 h  Q Ckj k+ ,j+ k+l,j+l +Pk+ ,j- k+l,j-1

+ Pk- ,j+ Uk-I ,j+l + Pk- ,J- Uk-I ,j-l

where

(2.lld) Ckj = {Pk+ ,j+ +Pk+ ,j- +Pk- ,j+ +Pk-,j- }

and, if (xkYj) E 9QH/
3S2h , then

(2.lle) [IH. [ 2hU]kj = O.

2h is

The projection operator IH given by

2h I(H T
(2.12) H 1 2 2h)

Finally we define the "coarse grid" operators LH, L2h . These are

(2.13a) LH: SH -* SH

where, if (xk,yj) i QH

(2.13b) [LHU]kj 2h 2  k,j j Pk+ ,j+ Uk+l,j+l

-Pk+ ,j- Uk+l ,j-1 - Pk- ,j+ UkI ,j+l - Pk- ,j- Uk.- ,j-l }
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and

(2.14a) L2h: S2h S~h

where, if (xh'Yj) E 22h then

(2.14b) [L2 hU]kj 1 -Pk+l,j[Uk+2,j kj
4h- {PljU,j Uk 2, Pkl,[Uk+2, Ukj]}

4h
+ {2Pk,j[Uk~ j -Pk [Uk -Uk .]}

4h2 {,j.jU,j -Ukj-2] ,j+l k,j+2 k.

4h

We are now ready to describe the three grid methods. Let Bh be a

non-singular linear operator defined on Sh

(2.15) B h Sh -+ Sh

Let the smoothing operator Gh be defined by

(2.16a) Gh = h - Bh Lh

and assume that

(2.16b) (LhUU) < 1 , Vu E Sh , u # 0

Al gori thm

0

Step 1: Given u 0 Sh' form

(2.17) = G u + Bhl F
h h
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Step 2: Perform one odd relaxation step. That is, construct 2 via

(2.18a) Ukj = kj ' (x kYj)  E QH

(2.18b) [LhU]kj fkj ' (xk'Yj) E Qh/2

ukj = O, (xkYj) E H

H
Step 3: Set r : f - LhU r H  h r

Step 4: Let 4 be obtained as follows.

(2.19a) i : O, (xi'yj) 2

-' 2h-~
(2.19b) EL H ij = H , xi) H H/2h.

Step 5: Set iH = r - L
H rH -LH4'' r 2h =I Hr H

Step 6: Solve

L2h = r2h

Step 7: Set u' = + I + Ih

1 0
Step 8: Set u 1 u and return to step 1.

Observe that the red-black or odd-even nature of the basic equations means

*that (2.18b) and (2.19b) are explicit equations for the determination of

Ukj and 4i. respectively.

kj13

.. . . . . . . . . . . . .
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3. Some Notation and Facts

Let uv E Sh or SH or S2h. Then

(3.1) (u,v) = Uk~jVk, j

where the sum is taken over all indices (k,j) so that (xk'Yj) E Qh ' or

0H or 02h respectively. Whenever it seems that further clarity is required

we will indicate the space by writing

(u,v) a' a = h or H or 2h

Since Lh, LH and L2h are positive definite operators we have the

inner products

(3.2) [u,v] a =L au,v) a , a = h or H or 2h.

Let

(3.3a) Nh: = Nullspace IhLh C S

hcs
(3.3b) Rh: = Range IH C

2h 

(3.3c) NH: = Nullspace IH LH S

H H H

(3.3d) H: = Range 12h C

Lemma 3.1: We have

(3.4a) S = NhQ ]Rh' S = NH® (RH



-. NNWq I W W V1

In fact, N h and IRh are L h orthogonal; N H and IRH are L H

orthogonal. That is, if N E a~ W 6 , a =h or H , then

(3.4b) Erw~ L (a nWa =0

A function u E Sh is in N if and only ifh h

(3.5b) [LhUkj = 0 ,(xkVyi) H

A function yu S H is in NRH if and only if

(3.6a) [LHv kj =0 (xVyj) f2H/Q2

A function uv SH is in N H if and only if

(3.6b) vkj = 0 (x k5y) E2h

Proof: The assertions (3.5a) and (3.6a) follow from the definition of

h 2h

(3.6b) now follow immediately. See [3j.

Let

AH h
(3.7a) LH I Ih Lh IH

(3.7b) L 2h: I H LH I 2h

Using the basic relations (2.10), (2.12) we see that

. .. 7'J
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(3 .7c) 11 1~l V1 (L Ih VIhV) L -(L v
H Lh h H H h 2 H VHs

(3 Hd , 12 L IH U' 1H U) _1(

(.d I2h fL H (H 2h 2h H =2 (L2hUtU) 2h.

*The formulae (2.9), (2.10), (2.11), and (2.12) together with (3.5a) and

(3.6a) imply

A 1 h
(3.8a) L u -L I uH 2 hH I

(3.8b) L hv L 2 H 2hv2

*The analysis of [3] is based on the following facts about L H9 L2h

Lemma 3.2: There are operators L(l), I(", L~l), d"1 such that:
H 'H 2h '2h

1 (1) 1
*(3.9a) LH = L + [0

2 2 H

*(3.9b) Lh LO + E

The operator H 1 is based on the five points (x~y) (xk1Y+)

*(x klIYj+l)S (xk-l'yjl)t (xk~l5y.1l). These are the same points on which

L is based. The operator I(') is based on the five points (xky)H H y

(x k+2'yj ), (xk25yj )q (xk yj2) (xk9yj 2* If k Ej 0 (mod 2), these are

the same points on which L 2h is based. Similarly, if k E j E0 (mod 2),
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(j) ......... 7

(k) (k)

The five point star for LH. LI)H

(.) m------m...

m denotes a point in RB

E3 denotes a point in RG

(k)

The five point star for L) L (1)

H 2h' 2h

Figure 1

m.

I ";' . -- .'--'. ... . .. -" .-..- ; " '': - ' ' , "" " "" " " " "" " ' - " " ' . .; " " ' "
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LM is based on these same points The operators LM ) LM are
2h H 2h

"almost" the operators LH9 L2h. To be precise, we have: let

3-Pk-,jPk-Ij-+ Pk,j- Pk-,J-l

(3.10a) a k- ,j- = [ Ck-l,J Ckj - 1Ij

_k__-_Pk+_,_-_ PR+ ,j Pk+l ,J-h1

(3.10b) b k ' = C j + k+ J '
k+ ,j- [P- ck+ j-1 C k+l ,j J

(3.10c) dkj = [a.k,j_ + a k+,j+ + bk+ ,j_ + bk_ ,j+ ]

If (k+j) -- 0 (mod 2), then

(3.11) [L~ l)U]kj = h{_ak2 +,j k+,j+l " ak- Uk.l,j-1

-bk+ ,j. Uk+l,j-l - bk_ ,j+ Uk ..l,j+l + dkjUkj}

An easy computation shows that

12ak_ ,j_ - Pk- ,j- ' < Kh2

12bk+h,j_ - Pk+ ,j- l < Kh2

Hence, for every U E SH9

(3.12a) (L U,U) - Lu~ U < Kh2 (L UU) 9H H 1H'

(3.12b) i(LHU,U) - (L )u,u) < Kh2 L ()uU.

H. . . . . .
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A basic estimate is: for every U E SH

(3.13) 0 < H~ ),U) < 2(01+1h) (l )U,U)

Hence, if we write

(3.14a) L LH +L1E2
LH 2 H 2 H

then

(3.14b) -Kh ( L UU) < E()' < 2(l1+Kh) (L U'U)

Similarly, let

(3.15a) Ak ~ ' l = L , k+%/2,j + .'k+ ,J- 'k- /2,j-
kl ck+1 ,j+1 k+l ,j-1

k'+1 fk+ ,j+ Pk+;jj+/2  lk- ,J+ 'k- J+ 3/2]

(3.15b) B k =~ t~+ ,+ + - k- t j1

(3.15c) D kj [A k+l j + A k..l , + B k j+l + B kJ-1

If, k j =-0 (mod 2),

(3.16) LO1  Ai f- Au -B u2h 2h 2  k+1 , k+2,j - lj jk2j k,j+l k,j+2

B Bk j..lU kj-2 + D kj jk j}
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An easy calculation shows that

2

(3.17b) 12B kj+l -Pk*j+ll < Kh2

Hence, for all U E s 2h

(3.17c) -~ )' (L U <) K 2

2h ,U2h 2h ~U2hj K (L 2h UU)2h

The anolog of the basic estimate (3.13) holds. That is

(3.18) 0 < ([L' ,U < 2(l+Kh) (L~l)U,u

Hence, if we write

(3.19a) L -1L 1-22h 2 2h +2 L2h

then

(3.19b) K) (L <(E2U,U) < 2 (1+Kh)( LhUU)2h ' - 2h 2

Of course, if p(x,y) 1,then

(3.20) L L (1 L (h
H H 2h L2

Proof: The construction of L (1) and the basic estimate (3.13) is foundH

in [3]. The construction of Lh and the estimate (3.18) then follows

from the same arguments. The estimates (3.11), (3.17) are direct computa-

tions.

. . . . . . . .
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Our next result looks at the operator L1H

Lemma 3.3: The operator LHl is of the form

(3.21) (1) ~ ~ A U -A. . -
LH Ukj 2~ -k+l,j k+2,j - k-l,jk-2,j - k,j+l k,j+2

- B kJ- U k ,j-2 - kj Uk j}

The coefficients, A, B, 0D are given by

1 2
(3.22a) A k+lj = c k+l~j

1 2

(3.22b) klj= Pk- ,ipk-%/j c+ f p- j ekl,
k-l j Ck-l ,j

(3.22c) = ~+ k,j+l 2
k~j+1 Ck,j+l

(3.22d kJ\ = Pk,j- pk,j-/2 + kj- k~j:l

(3.22e) D k j A k+l,j + A kl,j + B k,j-l k,j+l
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where

(x sy )E
(3.23) =

O, (x,ya) h

Proof: These coefficients were computed in [3].

Remark: If

Ok±l,j 0 0, then Uk±2,j = 0,

ek,j±l O, then U k,j0 2  0

Lemma 3.4: Let (xkYj) E Q2h Then all 4 of its h grid neighbors

(xk±l,Yj) (xk'Yj±l) Q h Hence

Ske l , j = 6k,j±l - 0

Proof: (See Figure 2). This result follows immediately from the fact

that all corner points of a lie in RB.

It is useful to write E l) as the sum of two operators, one essentially
H

based on 2h and the other on SH/Q2h

:3
'% . - . . ..-:-.--: .L- .-.-, :-.-. .:---: :-:.----. -L-' -:--:'...L':.:.-L- L .L.-.-.-: ...-. L.- .Z -:.-L. .. . , . , -. L
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U-0-U

0

-o-m-0--0- 0 U 0

a 0 0

/ 0 m 0

o 0 0 0

0 0 U

o o 0 0 0

1 0 m 0 a

0 o 0 0 0

1 0 U 0 U

0 0 0 0

Reentrant Corner

o denotes a point in R0

* denotes a point in RB

o denotes a point in RG

Figure 2
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Definition: Let Mx Qx: S H - SH be defined by

(3.24a) [QXU]k,j = 0 (xkYj) E QH/Q2h

(3.24b) [QXU]kj = HIU]R,j , (xky j ) E Q2h'

(3.25a) [MxUlk~ = LMIU]k j  (xkY j ) E Q /Q2h

(3.25b) [MxU]kj 0 (xkY j) E 2h

Lemma 3.5: Let v E S2h Then

IH H 2(3.26) l(Qx 2hV,12hV)H -(L 2hVV 2h < Kh L2hVV)

Proof: The lemma follows from Lemma 3.4 and the estimates

4A 214AR+I,j " PR+I,jl < Kh pR+ l ,j

2
14Bk,j+l - Pk,j+ll < Kh pk,j+l

Remark: When p(x,y) - 1, then K - 0

Finally, we "lift" L2h (an operator defined on S2h) as follows: let

Lx: S2h - SH be defined by

(3.27a) [Lx(I hV)]kj = , (xkYj) E QH/2h

(3 27b [kjl k (xh)

(3.27b) [LxI 2hv)]k,j : [L2hV]k,j (h' ' 2h

Remark: Using this definition we may rephrase (3.26) as

(3.28) I(Q xH h H v ' H - Kh2  I H v 
H 0x 2h ,12hV)H - 2h 2hV I < x 2h 2h )H

I .....-, -.... , .. ... -. ? - ... .--.... .. - . . .. -i - .--., . . • , . . . - , . . . . . .-- .. .. - i , . . i : . L :
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4. Analysis I.

0 0Let 0 = u - u be the initial error. Then C = u - u is the error

after step 1, the smoothing step. Assumption (2.16) asserts that

2 =0L <(hO 0 0 11 12
(4.1) EL Lh h <(L h 6 Lh.

Using the decomposition (3.4a) we have

h(4.2) C = h +  I HW h f Nh w SH.

From step 2 [i.e. (2.18)] of the algorithm and Lemma 3.1 [i.e. (3.5b)] we

see that

h

(4.3) E u H : .

Hence, using (3.4a) we see that

(4 4)2 1'Wh 2 < I [ 2  + 111ihw11 2 : 1 1 2 < 11 Eo0 12

(4.4) L = Lh < Ih th  kh L h - kh

Using (4.3) and (3.7a) and step 3 of the algorithm we see that

(4.5) LHw = (I LhIH = rH.

See [3] for a more complete discussion of the significance of this fact.

Lemma 4.1: Let v SH  be the solution of
HA

(4.6) LHV rH LHW .

Let

(4.7) V =H + I~hV , H E NH' V S2h

.w ~~ ~ 2h,, H. H. 2h-.- .,'.,,:,ln;m, ,,....- , ,.m . • " " " " """," '' -- - , '
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Let ' be the function in SH constructed in step 4 [i.e. (2.19)] of

the algorithm. Then

(4.8) T .

Proof: Observe that (2.19a) and (3.5b) imply that 1 E NH  Also (2.19b)

and (4.6) yield

[LH(V-)]kj = 0 (xEk4 E 2H /22h

That is

N
(4.9a) (V4) = [(H- ) +1 2 h V E RH

while

(4.9b) (H- E NH

Using (3 .4a) and (3.4b) we see that (4.8) holds.

Consider the function which is constructed in step 6 of the algorithm.

We have

(4.10) L 2hLH( 2h L IH V2h :H Hv- H H 2h

thus
I^

(4.11) L~h = L2hV

From (4.3), (4.11) and step 7 of the algorithm we see that

I . .. . . . . . - . - . . . . . - . . - . - > -' . . . . - . i . - . ' i . . . - . . . i . 1 .
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(4.12) C = u - U = Ih[(W-) I12h] E h
H 2

0
Thus, if we seek an eigenfunction E , it must have the form

0 h

As we shall see, the generality of Gh and the estimate (4.1) implies

that it suffices to consider the case where Gh = Ih In that case

(413) = 0 h -N US(4.13) C C H[nH +I hU] J H H 2h

1 0
If 6 1 P (4.12) becomes

1 I H_) +l2h(U_0)] = iH~H +lhU] .

Thus

(4.14) = An: ' x AU, A = (-1)

Returning to Lemma 4.1 we have

LHGP+12hv) = LH(nH +I2h)

(4.15)

LH(xnH +lhV) L LH(H +I 2hU)

From (3.8b), (3.6a), (4.11) and (4.14) we see that

(4.16a) LHI2hI = 2L2hV = 2Lhb = 2XL2hU(4.16) LHIhV f2h

(4.16b) LHI hV 0
H 2h H/ 2h

-..

iv -_ . .. - . - ..- - , -. . .- - -. . .. - . - ., . . . . .. .. .--.. . . . . . . . . . . . . .-- , -L ," -I ' -. L. : " -jL; LZ - ': .
• '. " ',.' ' .- . r . ""- ,.'m,,m.'a " .- ,m ,,, m l 

= - "
" -.. . . . . . . ... .. .."
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A Thus, (4.16) and the definition of L [i.e. (3.27)) allows us to rewrite
x

(4.15) as

(4.17) X[L H TH -2 x hU] LHI- H h

To simplify the eigenvalue problem (4.17) we define

L #:S H *S H

as follows: let V E S H Then there is a unique representation

(4.18a) v +IH WEN W S
VH+I 2 hW ~H NH, W 2h~

Then

(4.18b) L #v = LH~ + 2 ti1HHH x 2hW

The eigenvalue problem (4.18) now becomes

(4.19a) XL v = LH v

(4.19b) V= T)I + I H U

Observe that both L and L H are symmetric positive definite operators.

Therefore, there is a complete set of eigenfunctions (v k which satisfy

(4.20) (L #v ksv. L (H vk2 v. = 0, k j

Then (3.7c) implies that

(4.21) fl0 Ih < max 11-l-X max Ji
0i ~

E L
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Thus, in view of (4.1), the general three-grid iteration (G h Y h

also satisfies (4.21).
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5. Analysis II

Consider the basic eigenvalue problem (4.19). Let us now focus our

attention on the left-hand-side of (4.19a). Using (3.9a) and (4.19b) we

have

(5.1a) L =1 L +~ I L~lI r) L( I ()HU
Hv 2 H ~H 2 H 2h 2 H ~H 2 H 2h

and

(v)L~v -Vl) + U) +

(5.1b) + i ( j(l) H U) + IIHU ,(l)~H I u (l)IHu
2 'H 2h 2 2h HH 2 2h H2h

1 U E(l): 1 (IH U i(l)1 H U)
2 2h H "H' f 2h'H 2h

The basic estimate (3.12a) allows us to replace L~l) by LH provided

we accept error terms of the form

(5.2a) 6l Kh 2[( LHIH U I 2 U) (LHHH )

(5.2b) 82 = Kh 2(L H l U)
2LHI2hU,2hU

(5.2c) 63=Kh 2 (LHNHIiH>)

Thus we may rewrite (5.1b) as

(V V)L!+ 1 H ULIHH H 2 ' fH HH 2 7 2hUH 2hU

(5.3)

2 rH' H IH H9 ~H 2h +2 2hU H I2hU)+06
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where

(5.4) 0(6) = 0(61 +6 +5 3)

From (3.6b) of Lemma (3.1) we see that

(nHkj= 0 , (xk'yj) E 2h

Hence

(5.5a) 9fHLfH ~ MXH

(5.5b) (nH- EM)1H U) H (~9x~U)

Thus, we may rewrite (5.3) as

(v L v L TI H'HH + (hU,L I hU) + ~~~XH

(5.6) + ( M IH U)+ 1 H U M IH U) +H" xI2h )2 2h 'x2h

±(1H 2 Q U) + O(W

2 2h 'xh

Let us consider the term

I(H H

(57a =2 2h 'H 2hU )H

From (3.7b), (2.12) and (3.9b), (3.19b) we have

(57) J=( 2h 2hz 2 U, 2h 2h+ 2( '2h 2h
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Thus, using the definition of Lx and (3.17c) we obtain

(5.7c) 1 IH - H + I'U 2 )

2 2hU xI 2hH 2h 2h

The estimate (3.28) allows us to replace Qx by Lx  provided we accept

errors of the form

(5.8) Kh =Kh
2 (L IH u H U) Kh2 (L H UH U)

x2hU 2h HI2hU 2h

Thus, we rewrite (5.6) as

V (vLv ) + [(2),

'V,LH 2 L2 2h U)2h

(5.9)

+ (vMxV> + 0(6) + 0(6)
2

The eigenvalue problem (4.19) becomes

(5.10) (X- ) (v,L#v) 1(U ii2)U) + <V,M v) + 0(6+6)2 2h )2h 2

Hence

X l -Kh 2
12

and

(5.11) A > 2 (l-Kh 2 )

The complete proof of our basic estimate requires a more detailed

analysis of the terms which appear in (5.10).

'.b.- - . *•,-. . -. ...... ................................ 
. ,--p"- - - -- ,',,*'.*.-.-i*''''''"'" ,. .w -'. -. .'.., '""'...' .. "'""''.. .,... * .' .. -'" '. '. . ,' .- ""
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Lemma 5.1: For all N H we have

HH

(5.12)0 (M n,n < h j( +Kh) ( rL n j

2h h

Proof: Usin hem escpriptn.o 1

Hem g5ven inr Lemma 3.3 we seetha

(5.13) (Um I H ) < 2IKh 2IHULIHU

(5.14 x ~~n 2h -k.(h k.2h

Thus,: The l ea bis d pro e ofi qiesmle ehv

Lem 52 Frevr 2U E 5 2hU ~ we hav

while [see (2.11)) {(I H U)kj for (xkl. E Q Al2 Is an "average" of

{Ua IY with (x ty) E Q .2 Since MX and L x are "almost" the same
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operator, (5.15) should follow. The complete details of the proof are

given in the Appendix. I

Theorem 5.1: Consider the three grid iterative scheme described in

section 2: steps 1-8. Let

0 0 l 1e= U - E = :U - U

There is a constant K > 0 , depending only on p(x,y) and its first

and second derivatives, such that

(5.16) 1 Lh < 1 (+Kh) O h

Moreover, if p(x,y) - const > 0 , then K = 0.

Proof: Let (A,v) be an eigenvalue and eigenfunction of (4.19), or

equivalently, (4.17). As we have seen, (X,v) satisfy (5.10) and (5.11)

holds. Expanding the terms of (v,Mx v) we have

(5.17) R.H.S 1 (u (2)U) + i [(H,MxH )+ 2( H,M IHhU) + IHUM HU)]2 R 2h 2h 2
+ 0(64)

Using (3.19b), (3.27), Lemma 5.1 and Lemma 5.2 we have

_.. (+h (I H -' H U H UMIHU)+06)
R.HS <(1+h) 2h x 2h ) + ( HH +( 2hU x 2hU~+066

< (l+Kh) [2 HHU,[xIHhU) + (-H,LH HY] + 0(6+6).

2h x 2 TIH .H .+ 0-64.

; -. n, W- amL'limd=mn- ~l" an'd 'L'di'lmlu W '& 'IW lll ldl . . . . . . . .
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Thus

(A'/2) v,L v) < 0(6+5) + Kh (v,L v)

Hence

Thus, (5.18) and (5.11) together with the remarks at the, end of section 4

imply the theorem.

14
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Appendix

In this appendix we give the details of the proof of Lemma 5.2. We

use the formulae of Lemma 3.3 which give the form of I(l) and hence

give the form of Mx  A simple summation-by-parts argument shows that

(A.1) H hU l RIHG -  H 2(IHU)

12hMx2h 2 2  ARk+I,j(I 2 hU)k+2,j kj2hk 2

+1L H H 22 B k(c 2 hU) k,j+2- (Ih U )lh-R k,j+l -~+ k2h' 2

while

(A.2) (IH U, xI H Uj ] 2
2h x2h 4h2 RPk+l ,j[Uk+ 2 ,j - Ukj

B

+ I+ p- 2

4h 2 RB Pkj+l[Ukj+2 kj

Note: It is essential to observe that the sums in (A.1) are taken over

points (xkyj) E RG while the sums in (A.2) are taken over points in

RB. Moreover, if (xkYj) E RB then

(H)
(I2hU)kj = Uk,j

Let j - 1 (mod 2) be fixed and consider the contribution to the first

sum (on the right-hand-side) of (A.l) from the points on a connected segment

of the intersection of Q with the line y = jh . That is, we consider a sum

- . . .. .. .. .. . . .. .. . . .. :- - . . . . ..- -. . .-. , . - . . . .. -. - . . . . . . . . - . . .. . . . .. . . . .- - . . . - . . , .. . . , . . ,
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r
1 1I - H U(IHhU) 2(A.3) j h2  A2r,j2(Ih 2r+l"j 2h2r-l,j
h r=r 0

For r0 < r < r - 1 all the points (X2 r+ly j )  . The points

(X2rolYj), (x2rl+l,yj) may lie on M or may lie outside T(*)

depending on the slope of the boundary near these points. In either

case (I hU)2rlj = (Ih U) , = 0.

Consider the contribution of such an "end-point" to the sum Zj

(See Fig. 3). For definiteness, consider the term

HH 2

(A.4) d2ro,j = A2roj[(I2hU)2r+lj -(12h U)22roli]

We should consider two cases, either the boundary has slope - near

(x 2ro,y j ) or slope + 1 . When the slope is + 1 , then z2r0 = 0 and

the analysis is much like the case when both (x 2r 1 ,yj), (X2r.lYj) E .

However, when the slope is -, then e2ro, j  0 (see Fig. 2). In this

case

(IH -)0

2hU 2  ,j:
10 H U) I <(l+Kh) J

2(lhU)2ro+l,j -< 4- [IU 2ro+ 2 ,j+ll + iU2ro+2,j-I1]

and

0 < A2rj J < (l+Kh)P2r +lj+

Near a reentrant corner with angle 450 one of these points may actually

lie on ai while the segment from its neighbor, say (X2ro+lYj), is

not entirely in 2. Nevertheless, U = 0 at that point.

• ,.. .___ ,.'."."--T..,.:. . ., , ~.. , .i . .k -" "" " '' ;"" ' " ;"" "" ""--'' " "'- -" " '" " - """-"""" " " "
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.* ..1 ....C . .. .. (a)

Totally interior

... * * ..... .... ......... J0  (b)

Near the boundary

..... 0........0.............J (C)

2Q2

Near an oblique boundary edge

m denotes a point in RB8

03 denotes a point in R G
Figure 3
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Hence

~k j<~ 3 (+Kh) { +i + 2r+, U U~ j+i]

(A.5) N - ~O+~ ~E~ 2jl 2o

+ P2ro+2j-1 [U 2r 0+2,j-1 -U 2 roj-1]2

Now, consider a term

(A.6) i2~ =A .[(I H U)2+ -( Hl U)~. 2

where r r < .r We write

= (I 2h) 2r+1,j - (2HU)2],

as a sum of four terms

I rj=Di 1j+1 + D2,j+l + D 1 j-1 + D 2,j-1

where - up to terms of orderh2

(A.7a) D = 2r+3/29j+ U - 2r- , i+ U19j+1 4 P2r+1,j 2r+2,j+1 4 P2r-I , j 2r,j+l

(A.7b) D 2+,+ U~r ~ PU3~,+422r+1 ,j ~ 2r1 , 2r-2,j+l

'Pr*l . . . . .-
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Indeed, expanding the coefficients about (x 2r5 y yields

hr 9 4K {h 2r+2,j+l U2rj+I + IU2rj+l Ur2 l

+ IU 2r+2,j-1l U 2 . 1-l + tU2rj-l -U2 2 ,j1 I}

Hence

l+Kh { -U2  2 * +
2r,j 16 {2r+l,j+1[U2r+2,j+l ~+

P2r..l,j+l[EU2r,j+l -U r-,j+li + ' 2r+l,j-l [U 2r+2,j-1 U 2rj-iJ2 +

Upon adding the contribution from each j line, we see that each

term

2~ P2r+l,j+[EU 2r+2,j+l -U2r,,j+1 1

4h

enters at most 4 times. Since each such term has a coefficient which is

less than or equal to (l+Kh)/4, the lemma is proven.
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